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Abstract

This paper presents Hamiltonian system based Saint Venant solutions for the problem of multi-layered composite
plane anisotropic plates. A mixed energy variational principle is proposed, and dual equations are derived in the
symplectic space. The schemes of separation of variables and eigenfunction expansion, instead of the traditional semi-
inverse method, are implemented, and compatibility conditions at interfaces are formulated by dual variables. By
expending eigenfunctions in the subspace with zero eigenvalue, an analytical solution of a cantilever composite plate is
presented to illustrate the proposed approach. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Airy stress function (see, e.g., Timoshenko and Goodier, 1970) and other semi-inverse techniques are
often used to solve the problem of elasticity, however for the case of multi-layered plate, the compatibility
condition of displacement seems an obstacle for them to formulate, although compatibility condition of
stress could be relatively easy to be described since each layer has an individual stress function.

Zhong and Zhong (1990) presented an analogy theory between computational structural mechanics and
optimal control, the theory of Hamiltonian system can therefore be utilized for the solution of elasticity
(see, e.g., Zhong, 1991), and a new solution system was established by using a translation from Euclidean
space to symplectic space, in which, the schemes of separation of variables and eigenfunction expansion,
instead of traditional semi-inverse methods are implemented (see, e.g., Zhong and Yao, 1997; Zhong and
Yang, 1992). For the problem of elastic composite plate, compatibility conditions of displacements and
stress at interfaces are easy to be described by dual variables in the symplectic space.

Variational method is a useful tool solving the problem of elasticity. Steele and Kim (1992) presented
a Fourier transform based modified mixed variational principle from the Hellinger—Reissner mixed
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variational principle, and derived state-vector equations for both elastic bodies and shells of revolution.
Further application of this principle can be found in the solution of plate bending (see, e.g., Kang et al.,
1995). In this paper, a Hamiltonian mixed energy variational principle is established, and a group of
corresponding dual equations are derived.

Saint Venant principle based solution, in the sense of static equivalence, is often employed to solve the
problem with complex stress boundary conditions. Zhong and Yao (1997) presented a Saint Venant so-
lution for multi-layered composite orthotropic plates via an eigenfunction expansion in the eigensubspace.
This paper is a further extension of the above work, a solution of Saint Venant problem is given for multi-
layered composite plane anisotropic plates.

2. Variational principles and Hamiltonian operator matrix

A composite plate with n layers is shown in Fig. 1 where x; < L (=0,1,...,n) is longitudinal coor-
dinate of the upper surface of jth layer. The boundary conditions at two side surfaces are specified by

o, =Xi(z) and 1.=Zi(z) x=0 (1a)

o, =X,(z) and 1.=27,(z) x=x, (1b)

The relationship between stress and strain for ith layer can be described as

Oy Cii Cyi C3 &xi Exi Bii Bri Bai Oy,
Oz = |Cyi Cai Cs; &z or & = Fz,i ,34,,- ,35_,,- Oz
Tz C3; Cs; Cgy Vxz,i Vxz,i E&i ESJ Eé,i Txz,i
(i=0,1,....,.n—1) (2)

Following symbols are defined to simplify the derivation
_ 1 G .
d; = det[c;;|; d==; c,==L-; B.,== G=1,2,...,6; i=0,1,...,n—1) (3)

[ ” ] Ba; ’ difs; g Bas

where subscript i denotes ith layer, it will not appear in the derivation afterward except the case where it
may cause confusion.

The Hellinger-Reissner variational principle for the composite plates can be written as (see, e.g., Hu,
1981)

\4

x0=0
layer O

~

layer 1
X2

layer n-1

Fig. 1. A n-layer composite plate.
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Lnl Xit]
{/ / [gxau+aza +TXZ<2M+6—W>—U(amaz,rxz)—Xu—Zw dxdz—&-Uel—i—Uez}:O

Oz ox
(4)
where
U(Gx; a;, sz) = %(ﬁl O'i + 340'3 + Eﬁriz) —+ 326)50-2 + ﬁ}axrxz + Esazfxz (5)
L _ —
ol = [ { Tzl - Pt 2], Yt (62)
0
v ) "” [ZW + )_(;u]é dx for prescribed tractions (6b)
¢ o [(w—W)o. + (u — @)1..]gdx  for prescribed displacements

Z3, X3 and w, u are prescribed vectors of traction and displacement at the end surfaces of z=0and z = L
respectively.

Coordinate z here is employed to simulate the time variable in the Hamiltonian system, x is a spatial
coordinate. A symbol ‘.’ in the following derivation will be used denoting the differential with respect to z,
ie. (-) =0/0z.

By making stationary for Eq. (4) with respect to o,, g, can be expressed in terms of ¢ and t as follows

ﬁl( S B) )

where ¢ and 7 represent o, and t,., respectively. Substitution Eq. (7) for Eq. (4) can lead to a Hamiltonian
mixed energy variational principle

5{ /L lnzl:/w (O'W—l-‘fl:l — H(w,u,0,7) — Zw — Xu) dx
0 Xi

i=0

dz+Uj+Uj}=0 (8)
where # represents the Hamiltonian function (or density of mixed energy) having the form

H(wyu,0,7) =

c60° + ¢yt —2c50’r+2ﬁzaa —|—2ﬁ;r d<2u> Zﬁlrawl 9)
X

1
28,
The state function vector can be described by v = {w, u, o, T}T, where ¢ and 7 are dual variables of w and
u in the symplectic space, respectively. The stationary requirement of Eq. (8) can yield a group of dual
equations as follows: v = Hv + Q; where

0 ﬁz% Ce —Cs 0

1 —ﬁI% /33% —Cs C4 ) 0
H=2"1 "0 0o 0 -p2li Q=3 _z (10)

0 —d& pL pL X

where H is a Hamiltonian operator matrix.
Compatibility conditions of displacement and stress at interfaces are specified by

1 6u, 1 Ou,_
ﬁ < ﬁz;("z ﬁa,i’fi) = ﬁ— (dil Fl - ﬁZ,i—]O’i*I - ,33,;'1’551) ;
Li 1i-1

=T w; =wi_, and  u; = u;_, X =x; i=12,....n—-1) (11)
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The boundary conditions at two side surfaces can be rewritten as

1 u _ _

m(doa—xo—ﬁzﬂoﬂo—ﬂlofo) :X1 To :Zl x=0 (123)
1 Ou,,_ — _

m (dnl Fl — Bop_10u-1 — 53,n1Tn1> =Xy =2y x=1x, (12b)

3. Hamiltonian eigenvalue problem and symplectic adjoint orthogonal relationship

The homogeneous equation corresponding to Eq. (10) can be written as

v=Hv (13)
For the free boundary conditions

1

ﬁ—l(dZ—Z—Bza—ﬁ3r):0 and t=0 x=0orux, (14)
Eq. (13) can be solved by using a scheme of separation of variables, i.c.

v=exp(uz)¥(x) and HY = p¥ (15)

where u is an eigenvalue, and W, satisfying the requirements of Egs. (11) and (14), is an eigenfunction vector
only related with x.
To describe the behavior of Hamiltonian operator, following unit symplectic matrix is introduced

[ 3 o[ ]

and a symplectic inner product is defined as

n—1

(vi,v,) = Z/XHl(vlTJvz)dx (17)

i=0
If v; and v, meet the requirement of Eqs. (11) and (14), it can be proved that

<V1,HV2> = <V2,HV1> (18)
H is therefore a Hamiltonian operator matrix in the symplectic space. The Hamiltonian eigenvalue problem
is not self-adjoint; however, it can be termed as an symplectic adjoint eigenvalue problem, that is to say, if u

is an eigenvalue, then —u must also be one. Thus the eigenvalues can be divided into two groups, i.e. group
A and group B

ta;(G=1,2,...); Re(us;) =20  in the group A (19a)

e, =1,2,...);  pp; = —ia; in the group B (19b)

In addition, there must exist two groups of eigenfunction vectors ¥4, and Wg; corresponding to eigenvalue
s, and pug; respectively, in which there must exist some of W,; and W, satisfying an symplectic adjoint
orthogonal relationship

<‘1’Ai, TBj) = 55,'; <lPAi7lPAj> = <‘I’Bi, TB]) =0 (20)

where J;; is Kronecker symbol.
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So the solution of Eq. (10) can be obtained by eigenfunction expansion (Yao et al., 1999) with following
combination

= i (2)¥a; + B;(2)¥s)] (21)

4. Eigenfunction vectors for eigenvalue zero

In the Hamiltonian eigenvalue problem, zero, if it is an eigenvalue, must be multiple with even number,
and there often exist subsidiary eigenfunction vectors with various orders in Jordan normal form (Zhong
and Yao, 1997; Xu et al., 1997, Van Loan, 1984). A combination of eigenfunction vectors for zero ei-
genvalue with relevant eigenfunction vectors in Jordan form can be exploited to describe Saint Venant
solutions.

Two fundamental solutions for equation H¥ = 0 with conditions (11) and (14) can be written as

o)z{le, u=0, o=0, 7::()}T and V(ro):‘l’(ro) )

lllgo):{wz(), u=1 6=0, t=0}" and v§°):‘l'(2°) (23)

% and ‘I’go) describe rigid body translations along z and x axes, respectively, and are located at the heads
of two Jordan chains.
The governing equation of Jordan normal form eigenfunction for eigenvalue zero can be written as

HY® — gk (24)

where k refers to kth order Jordan normal form (k =1,2,...).
Solving equation H‘l’ ‘I’ with conditions (11) and (14) can give an eigenfunction in the first order

Jordan form in the charn 1

W) = {Bsix+fi+ Do Prxtg+Di d 0} (i=0,1,...,n-1) (25)
where

Jo=0; f;':fi—l_xi(ﬁii_ﬁii—l) (i:1,2,...,n—1) (26)

go = 0; gizgf—l—xi(ﬁzj—ﬁz,f—l) (i=12,...,n-1) (27)

‘l’gl) itself is not the solution of the original Eq. (13); however by combining with ‘PEO) a solution can be
obtain to describe a simple extension in the form

Vil) _ ,I,<11> n z‘I’(l()) (28)

Because ‘I’(ll) is symplectic adjoint with ‘I‘(lo), eigenfunction in the second order Jordan form in the chain 1
will not exist.

Srmrlarly, a solutron for rigid body rotation can be obtained by solving equation H‘l’ ‘l’(z0> and
comblmng ‘I’ 6 with ‘l’2 , where

W ={Dy—x, D5, 0, 0}7 and v =w 49! (29)

‘P( ) is an eigenfunction in the first order Jordan form in the chain 2. Because ‘l’ is symplectic orthogonal
wrth the eigenfunctions ‘l’ and ‘1’2 , eigenfunction in the second order J ordan form in the chain 2 will
exist.
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The eigenfunction in second order Jordan form in the chain 2 is

" —1Bs,(x = D2)* = Ds(x = Da) + pi + Dy
v = = —3B2u(x = D)’ + i+ Ds (=0.1,....n—1) (30)
02, —di(x — D)
Lo 0
where
po=0; p=pi —l—%(x,« - D2>2(ﬁ5,i - ﬁS,i—l) (i=12,....,n-1) (31)
q90="0; gi=gqi +%(xi - D2)2(ﬁ2,i - ﬁz,i—l) (i=12,...,n=1) (32)
A solution of pure bending can be given by
v =W o)) 12w (33)

‘sz) is also symplectic orthogonal with the eigenfunctions \Pi‘” and ‘Pg)) by choosing appropriate con-
stant D, (see Appendix A), eigenfunction in the third order Jordan form in the chain 2 will exist.

T
‘[’gi) = {wgl.), ug), Ggl-), TS;') } (i=0,1,....,.n—1) (34)
where
W) = 1 (Ba o By = 282, ) (r = D2)’ = 15, Ds(x = D2)” + (x = D2) [Bs (pi + D3)
+ criri — qi — Ds| + 1 + Dg (35a)

us) = —Y(ByiPs; + c3,d) (x — D2)’ — 1By Ds(x — D) + (x — D3)[Bo;(pi + Da) — cayri] + s+ Dy

(35b)
05 = —Psdi(x = D2)* = diDs(x — D) + di(pi + Da) — P51, (35¢)
) =l (x—D,) +r, (35d)
where

ro =YDy ri=rig Y% =Dy (di—diy) (i=1,2,...,n—1) (36)
so=0; s =si1+50x— D2)3(ﬁ2,iﬂ57i + 3 — By By — C3im1dio1) + D3 (x; — D,)’

X (Boi = Bri1) — (xi = D2) [Boy(pi + Da) — c37i — Boyy (Pt + Da) + €34-17i1]

(i=12...n-1) (37)
to=0; 6=t~ %(xi - D2)3 (ﬁz’i + Psi — zﬂg,i - ﬂz,i—l = Bsi + 2/3;—1) + %D3(x,- - D2)2

x (/35‘1‘ - /35‘1‘71) — (x; = Dy) [ﬁS,i(pi +Dg) +criri = qi — Psi (Pt +Ds) —crioarion + qH}

(i=12....n—1) (38)

A solution of a bending problem with constant shear force can be given by

v =W 2w 12w e (39)
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Table 1
Adjoint symplectic orthogonal relationship of eigenfunctions for eigenvalue zero
\l,(lo) ‘l’il) ‘l’(zo) ‘l,él) \l,;z) ‘I’(;)

w0 0 * 0 0 D, D,
wi 0 0 D, D, Dy, Ds
v 0 0 *
wpi) . 0
\yg) 0 Ds
) 0

Because ‘I’f) is symplectic adjoint with the ‘l’(20>, eigenfunction in the fourth order Jordan form in the chain
2 will not exist.

The above six eigenfunctions constitute symplectic adjoint and orthogonal relationships, as shown in
Table 1 where 0O represents a symplectic orthogonal relationship, * represents a symplectic adjoint rela-
tionship, and D; (i = 1,2,4,5,6) represent a set of parameters. Proper choice of D; (i =1,2,4,5,6) can
make two eigenfunction vector symplectic orthogonal. The expressions of D; (i = 1,2,4,5,6) are listed in
Appendix A, where k; and &, denote extensional and bending stiffness of a cross-section, respectively, and
D, represents the position of centroidal axis of a cross-section in the pure bending problem.

5. The Saint Venant solutions

Combining eigenfunction vectors for zero eigenvalue with eigenfunction vectors in Jordan form, an
analytic solution of Saint Venant problem can be obtained via expanding eigenfunction in the subspace for
zero eigenvalue, having the form

v=a,)P" + &)YV + a3(2) P + ay )P + as(2) ¥ + ag(z) P (40)

Substituting Eq. (40) for Eq. (8) and choosing proper D; (i = 0, 3,7), listed in Appendix A, then yields

L
5{ / (k1a3d1 + k2a5éz4 - kzaéilz — %klag - %kzaé + k2a4a6 — N(z)a1 — Q(Z)az — W(Z)ag
0

— M(z)as — 0(z)as — V(z)a())dz + (ksazas + kyasag)|_, + Uez} =0 (41)
The expressions of &; (1,2,3,4), N(z), and Q(z) etc. are listed in Appendix A.
The implement of variations for Eq. (41) with respect to a; (i = 1,2,...,6) leads to following differential
equations
as; = —N(z)/ky with respect to da; (42a)
ay =az + W(z)/k with respect to da; (42b)
as = 0(z)/k, with respect to da, (42¢)
as = ag — M (z)/ky with respect to day (42d)
as = as+ 0(z)/k, with respect to das (42e)

ay =ay — V(z)/ky, with respect to das (42f)
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Usually it is difficult to describe the required boundary conditions on two ends exactly with these six @;, a
group of variational principles (Eq. (41)) based boundary conditions of tractions are therefore presented,
having the form

as :N/kl; as = (M—FD;@)//CQ, ag = —@/kz when z=0or L (43)
where
N = / " Zdv, 0= / Yydx; M= / (Ds — x)Zydx (44)
0 0 0
On the other hand, on the basis of Eq. (41), the boundary conditions of displacement can be rewritten as
kiay + kzas = W; kras + kyas + kyag = U; koar — kyas = -V (45)
where

n—1 Xi+1 _ n—1 Xitl o n—1 Xit]
W= wd; dx; 0= wol dux; V= wel) +al) | dx 46
2ii 2,i 2,i
=0 Jxi =0 Jxi =0 Jxi

W, 0 and V represent equivalent displacements.
For clamped end, boundary conditions can be described by Eq. (45) or

w=u=0w/0x=0 whenz=0orL and x=% (0<x<x,) (47)

Assuming X = 0, analytic solutions of Saint Venant problem can be given by integrating Eq. (42) with
boundary conditions (43) and (45) or Eq. (47).

As a example, a cantilever plate is considered, which is clamped at the end z = 0, and subjected to a load
P in the direction of x axis at the another end z = L. By integrating Eq. (42) with conditions (43) and (45)
(or Eq. (47)), the distribution of stress can be described as

oi=Pl(L+Dy =20l — )| [ks w=-P ke (=01, 1) (48)

If the distribution of load P is described as Eq. (48), can be considered as an elastic analytic solution
since the requirements of both Eq. (10) and two side boundary conditions (1) are satisfied. The difference
between two solutions of taking boundary condition (45) or (47) can be proved to be only a minute rigid
body displacement.

6. Conclusions

The major objective of this paper is to present a Saint Venant solution for elastic multi-layered com-
posite plane anisotropic plates in the proposed Hamiltonian system. The merits of using the proposed
approach lie in

1. being convenient for the application of conventional schemes, such as separation of variables, and eigen-
function expansion etc.,
2. facilitating to describe compatibility conditions at interfaces for displacements and stress.

In some cases, such as interlaminates stresses analysis (see, e.g., Pipes and Pagano, 1970), the end effects
must be taken into account, it is definitely necessary to consider non-zero eigenvalues and their eigen-
functions to give more exact description. Due to the limited capacity of a paper, this issue is not discussed
here. In fact, the major effect of the addition of non-zero eigenfunctions will appear at the neighbor areas of
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the ends, these non-zero eigenfunctions in Eq. (21) will decay from two ends quickly, the solution with zero
eigenvalue is still a fairly good description of stress distribution in the region far enough from ends.
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Appendix A
(1) Expressions of constants Dy, D, and k;
bo b, b n=l xp

Dy = ——; Dzzk—§
1

- d;dx (A.1)

where
n 1 x,+1 n—1 Xit1
/ i (Bsx + f;)dx b = Z/ dixdx (A.2)
i=0 Y Xi

(2) Expressions of constants D3, Dy, k» and k3
bs k3 — by

Dy =—— D A3
3 k2 ) 4 = kl ; ( )
” 1 X:+1 n—1 Xit+1
/ (x —Dy)’dx; ks = Z/ di(Dy — x)(Bs,;x + f;)dx (A.4)
i=0 vXi
where
Xitl n—1 Xit1 5
/ [ SBs(x = D)’ +p,] di b= [ dflpte— )~ plx— Do)
i=0 v Xi
(A.5)
(3) Expressions of constants Dy, Ds, Dg, D; and k,
b4 b6 + b7 b5 b8
D1:E§ TR Dﬁz—kT; D7:D3D5+E; ks = 3(b7 — bs) (A.6)
where
S 2 3 2
by = / {4 (Boy = 283, ) (x = D)’ + 3i[Bo,Dz + & — 285, (B, D2 + Ds + £)] (x = D2)
=0 Jxi
+ [Vi (ﬁ2,i - B;i) +diPs(pi + Ds — D2Ds3) — d,-Dsf,} (x = Ds) + |r:(BoiD + &)
+ (Bs.Ds + £)(diDs + dips — s ri) | dx (A7)

bs = Z / ﬁz, + Bo; — 2ﬁ§i) (x = D2)’ = 1B5,Ds(x — D2)” + [Bs;(ps + Da)

+Cl,i”i—%] (x = D») +ti}dx (A.8)
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n—1
be= /
i=0 /i

Xit1

di{(Bus+ Bos = 28%) (v = D2)* = 45, Da(x = D2)* + [Bs, (s + D)

+ciiri — (]i] (x— Dz)2 +ti(x — Dz)} dx (A.9)

n—l o pxig
b= [ {1(262 - o) = D)* S Dalx — o)+ A+ 203 = 3P~ o)
i=0 JXi

(B = Bas) | (x = D) = Ds(2dips = i) (x = D)

+ dipi(p; + D4) + 1i(q; — ﬁS,Lpi)}dx (A.10)
b —i/l —id{zﬁ (2B + Bos — 282) — B ](x—D 4+ Lap (10ﬁ2 —5B,,— 28 )
3 = 2 J, 127 5,0 2, 6. 5, 3, 2 12 3 5, 2, 6.i

1
x (x - D2)4 + 8 {di(Pi + D4) (ﬁ6,i + 4ﬂ2,i - 8[3%1) + 3diﬁ5,i(D§ +2q: + 2D5)

(2B + s — 8%+ TBs )| Do) 3 [ (382, — By — 284,

o+ diDs (2 — 3B5,pr — 3Bs5,Da) + s,k — 25 dits| (x — D)’
+ [di(pi + Dy) (Bspi + PBs,Ds + c1,ri — q; — Ds) — ditiDs — 17 (c3; + ¢1,Bs,)
s (i + Ds) + rilp + D) (o, — B, ) | (x = D)

—+ 87 + t,‘di(p,' +D4) — [iriﬁii} dx (All)

(4) Expressions of functions N(z), O(z), M(z), W(z), 6(z), and V(z) in Eq. (41)

N(z) = Z / Z(x,2)dx + Zs(2) — Z1(2) (A.12)

n—1 Xit1

0(2)=>_ X(x,z)dx + X5(z) — X1 (2) (A.13)

=0 7 Xi

n—1

Xit1 _ o _ o
M(Z) = Z/ [(DQ — X)Z + D3X] dx + (D2 — x,,)Zz +D3X2 — DzZl — D3X1 (A14)

i=0

n—1 Xit1 _ o
ey =y [ [zl de (W) 2+l T
Xj

i=0

— [wlsZ1 + ul, (A.15)

X=Xy
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n—1

Xitl _ _
/ Wz Z"‘”zz }d)H‘ [Wzn 1ZZ+”2n 1X2} - [Wg(;zl"‘”(z%())Xl} 0 (A.16)
i=0 X=Xp ’ x=
n—1 Xi+1] _ _ _ —
/ 07+ uf) }dx—&- [wfngz +u§?,371)(2} - [Wg?gzl +u(2?3xl} . (A.17)

i=0
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